

JASPERS Networking Platform Supporting investments in Smart Grids in 2014-2020

Smart Grids Project Assessment Tool

Vincenzo Giordano Tractebel Engineering

Brussels, 25 March 2015

SCOPE OF THE WORK

- Provide a framework for the JASPERS project team to support national authorities of beneficiary countries (i.e. new EU Member States) identifying most relevant Smart
 Grids investments for the EU funding period 2014-2020:
 - Methodology for **framing the scope and impact** of Smart Grids investments
 - Definition of **eligibility criteria** for Smart Grid investments
 - **Guidelines** for the application and implementation procedures
 - Analysis of **case studies** (Poland and Romania)

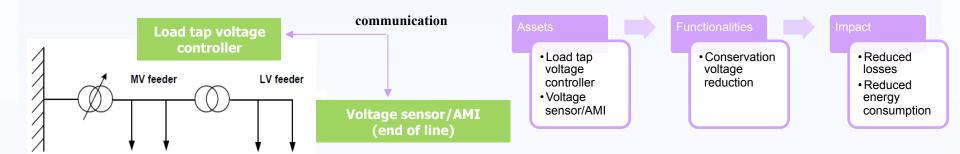
AGENDA

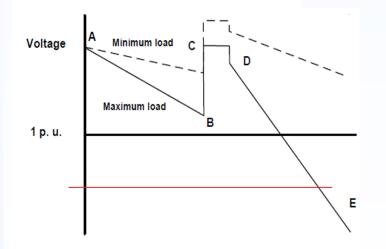
- Characterization of Smart Grid investment
- Eligibility criteria and proposed assessment methodology
- Smart Grid assessment tool

What do we mean by SMART GRID?

According to the EC Infrastructure Regulation No 347/2013:

- Any equipment or installation, both at transmission and distribution level
- Aiming at two-way digital communication, real-time or close to real-time, interactive and intelligent monitoring and management of electricity generation, transmission, distribution and consumption
- Integrating the behaviour and actions of all users connected to it generators, consumers and those that do both
- In order to ensure an economically efficient, sustainable electricity system with low losses and high quality and security of supply and safety;


March/2015



Jaspers Jain Asistance to Support Projects in European Regions

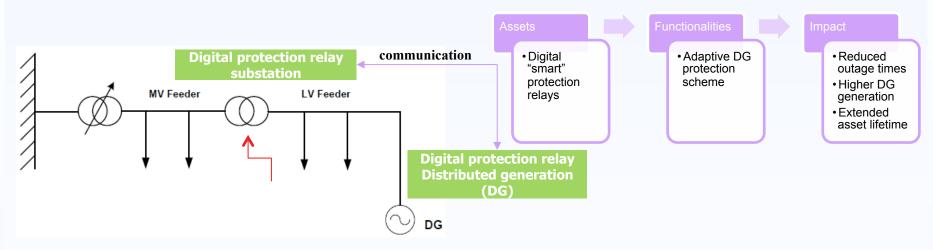
SMART GRID INVESTMENT- EXAMPLE (I)

GRID "SMART" VOLTAGE CONTROL – Conservation voltage reduction

TODAY: Load tap voltage controller: typically no automatic adjustment based on end-of –line voltage measurement.

SMART SCENARIO

Voltage controller in the substation receives **real-time voltage measurement** from the feeder's end and **automatically adjust** the transformer's tap in order to reduce voltage while keeping it above minimum admissible value


March/2015

SMART GRID INVESTMENT-EXAMPLE (II)

GRID "SMART" PROTECTION FOR DISTRIBUTED GENERATION

TODAY: DG relays typically rely only on local information

-If there is a fault at the transformer, the LV feeder is disconnected, but the load could still be powered by the DG (islanding). -DG relays have a very sensitive frequency band: if there is an under-frequency situation, the DG relay would disconnect possibly increasing the gravity of the frequency problem.

SMART SCENARIO

DG relays communicate with RTU in the substation ("smart relays"), receiving information on grid conditions.

-Adaptive settings of frequency band depending on grid conditions

-Disconnection of DG if substation relay is open (anti-islanding)

CHARACTERIZATION OF SMART GRIDS INVESTMENTS

From assets to impacts				KPI	
Smart assets	Smart functionalities	KPIs		1 - Reduced greenhouse gas emissions	
 1-Voltage regulators 		 1-Reduction of greenhouse gas emissions 2-Extended hosting capacity for 	Sustainability	 2 - Reduced local SOx, NOx emission 3 - Increased share of RE in the generation mix 	
 2-Adaptive protection 	 2-Volt/VAR control 		Integration of DERs	4 -Increased hosting capacity of distributed generation	
relays	18-Customer			5 - Increased hosting capacity for Electric Vehicles and other new loads (e.g. heat pumps)	
 26-Smart Meters 	electricity use			6 - Increased number of generation hours provided by DG	
INIELEIS	optimization	distributed		7 - Reduced peak demand	
		generation	Security and Quality o	8 - Reduced duration of interruptions per customer (SAIDI)	
		• 14-Reduction	Supply	9 - Extended asset life time	
		of congestions		10 - Reduced expected energy not supplied	
Mapping Mapping				11 - Reduced technical losses in transmission and in distribution networks	
			Energy Efficiency of the Power System	12 - Reduced non-technical losses in transmission and in distribution networks	
Assets- Functionalities- Functionalities KPIs			13 - Reduced electricity consumption		
			14- Reduced congestions in the system's electrical lines		
26 Assets	18 Function.	14 KPIs			

7

AGENDA

- Characterization of Smart Grid investment
- Eligibility criteria and proposed assessment methodology
- Smart Grid assessment tool

PROPOSED ELIGIBILITY CRITERIA

- Eligibility criteria
 - 1. Technical eligibility criteria
 - 2. Legal/administrative eligibility criteria
- Competitive selection of eligible projects
 - Eligible projects to be compared based on a cost-effectiveness index

In order to support project promoters' (technical) applications:

• Excel tool for step-by-step guidance of the project technical assessment

TECHNICAL ELIGIBILITY CRITERIA

1. Minimum technical requirements

• Is the project a Smart Grid investment?

2. Impacts

• Does the project deliver positive impacts in line with European and national energy priorities?

3. Economic performance

 Does the project bring net-positive economic benefits to society?
 <u>only major projects</u> (budget>50M€)

MINIMUM TECHNICAL REQUIREMENTS AND IMPACTS

Asset has smart characteristics?

TRACTEBEL Engineering

GDF SVez

- It has (possibly two way) communication capabilities and can be included in a digital control loop
- It is controllable/accessible remotely and/or has local intelligence to automatically adapt to operating conditions

Smarter than BaU investments?

• The "smart" characteristics of the asset are not already widely deployed in the country (e.g. not in the regulated asset base)

Smart asset provides smart functionalities?

• The asset is actually used to implement smart functionalities

Smart functionalities provide positive impacts?

• Positive score on KPI analysis

March/2015

TECHNICAL ELIGIBILITY CRITERIA

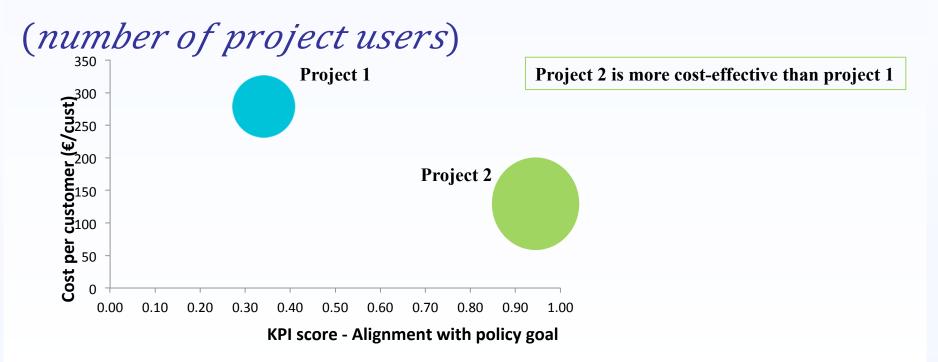
TRACTEBEL Engineering

Category	Eligibility criteria's name	Description	Evaluation outcome (compared to BaU scenario)	Condition to be eligible	
Technical	Minimum technical requirements	 Project includes Smart assets Smart assets are combined to provide Smart functionalities 	Comparison of Smart Grid assets/ functionalities with standard BaU investments	Project meets minimum technical requirements	
Impacts in line with energy policy goals	KPI analysis	Calculation of variation of KPI values thanks to project implementation.	Qualitative global KPI score (based on KPI ranges and weights defined by national authorities)	Project meets a minimum KPI global score defined by national authorities	
Economic	Economic CBA	Assessments of costs and benefits of the project for society	ENPV; EIRR	Positive net benefits	Only major projects (under the meaning of Article 100 of EU Regulation 1303/2013)

Eligible projects are then ranked according to a cost-effectiveness index

The index encapsulates the national energy priorities (KPIs score), the total project cost and the number of consumers

affected (number of project users - providing an indication of the project size)



COST-EFFECTIVENESS INDEX

- 1. Calculate the global KPI score
- 2. Compute the total costs per number of project users
- 3. Calculate the cost-effectiveness index:

Cost effectiveness=KPI score/*Total Project Cost*/

AGENDA

- Characterization of Smart Grid investment
- Eligibility criteria and proposed assessment methodology
- Smart Grid assessment tool

Project's score – Assessment of individual KPIs

- 1. Calculate the expected KPI variations at the end of the project
- 2. Assign a value to the impact level of each KPI: e.g. 0 for "no impact", 1 for low impact...,

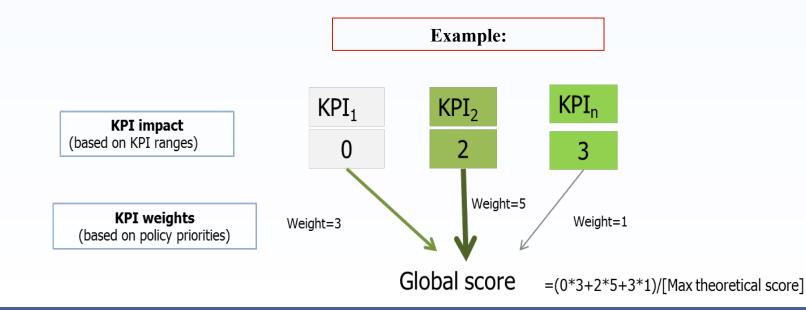
3 for high impact

• This is done by comparing the KPI value with predefined KPI ranges (set by national authorities)

	КРІ	Value for the project	KPI score (1=Low; 2=Medium; 3=High)	
Sustainability	1 - Reduced greenhouse gas emissions	5%	2	
	2 - Reduced local SOx, NOx emission	5%	2	
	3 -Increased hosting capacity of distributed generation	-		
Integration of DERs	4 - Increased hosting capacity for Electric Vehicles and other new loads (e.g. heat pumps)	-		
	5 - Increased number of generation hours provided by DG	-		
	6 – Increased share of RE in the generation mix	5%	1	
	7 - Reduced peak demand	-		
Security and Quality of Supply	8 - Reduced duration and frequency of interruptions per customer (SAIDI; SAIFI)	25%	3	
ouppi)	9 - Extended asset life time	-		
	10 - Reduced the expected energy not supplied	-		
	11 - Reduced technical losses in transmission and in distribution networks	2%	2	
	12 - Reduced non-technical losses in transmission and in distribution networks	-		
Power System	13 - Reduced electricity consumption	5%	2	
	14- Reduced congestions in the system's electrical lines	-		

Indicative KPI ranges based on available pilot project results

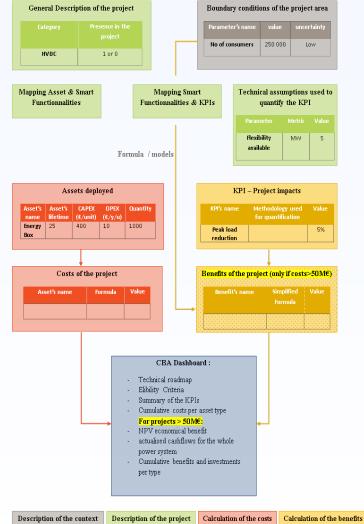
	КРІ	Low impact	Medium impact	High impact
	1 - Reduced greenhouse gas emissions	< 3%	3% - 10%	> 10%
Sustainability	2 - Reduced local SOx, NOx emission	< 3%	3% - 10%	> 10%
	3 – Increased share of RE in the generation mix	< 2%	2% - 4%	> 4%
	4 -Increased hosting capacity of distributed generation	< 10%	10% - 25%	> 25%
Integration of DERs	5 - Increased hosting capacity for Electric Vehicles and other new loads (e.g. heat pumps)	No estimation	No estimation	No estimation
	6 - Increased number of generation hours provided by DG	< 10%	10% - 25%	> 25%
	7 - Reduced peak demand	<2%	2% - 10%	> 10%
Security and Quality	8 - Reduced duration of interruptions per customer (SAIDI)	< 5%	5% - 20%	> 20%
of Supply	9 - Extended asset life time	No estimation	No estimation	No estimation
	10 - Reduced expected energy not supplied	No estimation	No estimation	No estimation
	11 - Reduced technical losses in transmission and in distribution networks	< 2%	2% - 5%	> 5%
Energy Efficiency of the Power System	12 - Reduced non-technical losses in transmission and in distribution networks	No estimation	No estimation	No estimation
	13 - Reduced electricity consumption	< 2%	2% - 10%	> 10%
	14- Reduced congestions in the system's electrical lines	No estimation	No estimation	No estimation



March 2015

Project's score: Weighting KPIs

- **3**. Assign a weight to each KPI, to define its relative importance compared to other KPIs: e.g. 5 for "high priority KPI", 1 for "low priority KPI".
 - KPI weights are to be defined by national authorities based on national priorities and needs
- 4. Combine the value of the different KPIs according to their weights


 $Score=\sum kpi^mmark(kpi)*weight(kpi) /Max$ theoretical score Max theoretical score: 3*∑kpiî≣weight(kpi)

Project assessment tool

- Easy-to-use Excel format ٠
 - Two types of users
 - Dashboard for quick review of project eligibility score ٠
 - Step-by step guidance for detailed project assessment ٠
- Four sections: ٠

.

٠

- Description of the context ٠
- Description of the project ٠
- Calculation of the costs ٠
- Calculation of KPIs and monetization of benefits ٠
- Detailed characterization of the assessment framework
 - Definition of key parameters ٠
 - Detailed formulas for monetization of impacts ٠
 - Automatic calculation of CBA economic indicators ٠

SUMMARY OF KEY POINTS

Framework for the evaluation of Smart Grid investments in the EU funding period 2014-2020

- Detailed characterization of Smart Grid investments (assets, functionalities, KPIs)
- Technical eligibility criteria:
 - 1. Minimum technical requirements
 - 2. KPI impact
 - 3. Net economic benefits for society (only major projects)

Eligible projects are then ranked according to their cost-effectiveness (KPI score/(project cost per consumer)

• Supporting material for project application and evaluation:

- Project assessment tool for step-by-step guidance of the evaluation process
- Feedback from international experiences on Smart Grid pilot implementations

For info or further questions on this presentation, please contact:

Massimo Marra JASPERS Senior Networking Platform Officer ph: +352 4379 85007 <u>m.marra@eib.org</u>

> Vincenzo Giordano Tractebel Engineering Project Manager - Smart Grids vincenzo.giordano@gdfsuez.com

www.jaspersnetwork.org

jaspersnetwork@eib.org

